
The PROBA Missions – Design Capabilities for Autonomous Guidance, Navigation and Control

Jean de Lafontaine President

NGC Aérospatiale Ltée NGC Aerospace Ltd

♦ All 100% Canadian-owned

- First company incorporated in 2001, experience in guidance, navigation and control (GNC) software since 1987
- ♦ 18 employees (14 eng, 4 admin)
 - 13 at NGC Aerospace Ltd in Sherbrooke
 - 5 at NGC Aerospace France

NGC Aerospace Facilities

Main Office (downtown Sherbrooke)

- Administration & design activities
- NGCLAB (Sherbrooke industrial park)
 - For hardware-in-the-loop verification & validation

LDTF

NGC Mission

- To define space missions and to develop the required analysis tools, simulators and flight software that contribute to the advancement of knowledge, space science and space technology.
- To design guidance, navigation and control subsystems that increase the intelligence, autonomy, performance, reliability and safety of aerospace vehicles while, at the same time, reducing their operational costs.

NGC Products and Services

Three Main Branches

Autonomous GNC for Earth-orbiting satellites

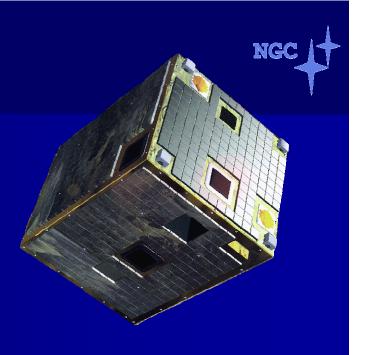
 From requirements to flight to commissioning Autonomous GNC for planetary exploration

 Autonomous hazard detection and avoidance
 Precision landing

Mission Design & Analysis
POETE, TICFIRE
Constellation Analysis

GNC for Autonomous Satellites

- ♦ Intelligent GNC algorithms
- Tools for automatic generation
 & validation of the flight code
- High-fidelity engineering
 simulator



PROBA-1 Success Story

♦ PROBA-1: Earth-Observation Mission

- launched in October 2001
- 2-year mission
- still successfully operating after 81/2 years
- reaction wheels + star tracker + magnetic
- ♦ 1st fully autonomous ESA spacecraft
- 1st with automatic flight code generation
- ♦ 1st with variable-gain Kalman filter
- ♦ 1st with complete on-board guidance
- Ist with quaternion-based multivariable gyroless + sliding-mode controller for large-angle manoeuvres

PROBA-1 on the PLSV Launcher

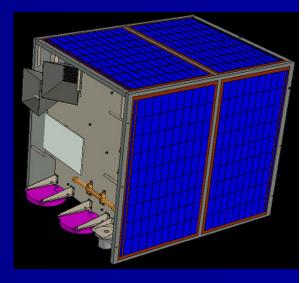
PROBA-2 and PROBA-3 Missions

PROBA-2: Sun-Observation Mission

- launched in November 2009
- completed commissioning in Feb 2010
- same autonomy as in PROBA-1
- 6 GNC technology experiments
- 3 versions of unscented Kalman Filter incl. a magnetic-based state estimator

PROBA-3: Formation-Flight Mission

- to be launched in 2013
- Coronagraph S/C and Occulter S/C on elliptical orbit


Other Upcoming EO Missions

PROBA-V: EO Vegetation Mission

- Phase C/D started in February 2010
- Critical Design Review in April 2010
- To be launched in early 2012

 PROBA-Next: First commercial sale of NGC's flight S/W

- 3 different commercial clients have selected our technology
- Sentinel-3: Design and validation of the normal mode of operation

Relevance of the PROBA Missions

Can serve as platform for technology demonstrations

• 6 GNC technology experiments on PROBA-2

♦ Experience in GNC can support nanosatellite community

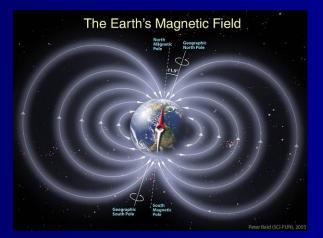
- low cost GNC system
- increased autonomy
- increased performance
- innovation in GNC techniques and algorithms

Example: LOCOOS
 LOw-Cost Orbit and Orientation State estimation

NGC

♦ Context

- Trend toward the use of small spacecraft (nanosatellites)
- Reduction in mission operation costs \rightarrow on-board autonomy
- Reduction in hardware costs \rightarrow low-cost, simpler hardware


Objective: Develop low-cost autonomous navigation system

- Based on 'simple', low-cost/mass/power/volume sensors
- To determine both the orbital states and the attitude states
- Using the 'natural' environment of a low-Earth orbit

Innovation: Combination of

- state-of-the-art magnetic-based state estimation
- state-of-the-art nonlinear unscented-based Kalman filter
- orbit determination using temperature/light/current sensors

♦ Benefits

- Low-cost **primary navigation system** for:
 - > low-Earth small/micro/nano/pico satellites
 - requiring medium-accuracy pointing/position knowledge
- Low-cost **back-up navigation system** for:
 - > larger operational satellites
 - requiring knowledge of attitude/position for:
 - degraded mission operation
 - safe-mode operation
 - fast recovery when primary system is back in operation

Current Status

- The LOCOOS navigation software is being integrated into a lowcost flight-proven microcontroller.
- Qualification model is being designed.

♦ Performance

Criteria	PERFORMANCE Magnetometer only	PERFORMANCE + Sun presence
Absolute position	< 100 km	< 15 km
determination	after 3 orbits	after 2 orbits
accuracy (2σ)		
Absolute attitude	< 4.5 deg	< 3.0 deg
determination	after 1 orbit	after 1 orbit
accuracy (2σ)		

- Important note: this performance is obtained using medium-accuracy magnetometer with typical biases after delivery
- Algorithms currently flying on-board PROBA-2.